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EXECUTIVE SUMMARY 

Previous research on many-item Best Worst tasks has shown that Sparse designs (where each 

item is seen only 1x per respondent, but all items are shown) have generally outperformed 

Express designs (where each item is seen 3x, but only a subset of the items [30%–50%] are 

shown per respondent), especially regarding out-of-sample predictions. At the 2023 Turbo 

Choice Workshop, a suggestion was made to potentially improve Express BW designs by 

including a fixed number of items [3–5] across all respondents, with the remainder selected 

randomly via a blocked design. 

We tested this approach via both simulated data tests and a comparative exercise among live 

respondents. For the latter, we compared in-sample and out-of-sample predictions across five 

design cells: traditional BestWorst, Sparse BestWorst, traditional Express BestWorst, and two 

Express BestWorst cells using user-selected seeded items or informed seeded items. 

Unfortunately, despite our best hopes, we saw no improvement of the seeded item Express 

designs over the traditional Express designs, all of which were generally outperformed by the 

traditional BestWorst and Sparse BestWorst approaches. The lone exception came from the 

simulated data, where we observed that using seeded items can help when there is a lot of 

response error in the data. 

BACKGROUND AND MOTIVATION 

There are several methods for handling many items in MaxDiff analyses. For example, there 

are Sparse MaxDiff, Express MaxDiff, and the Thompson Sampling1 approaches to handling 

many items. Sparse MaxDiff and Express MaxDiff are both variations of the traditional MaxDiff 

(Maximum Difference or Best-Worst) scaling method used in market research to determine the 

relative importance or preference of multiple items. 

Sparse MaxDiff focuses on reducing the number of comparisons each respondent must 

make. Instead of evaluating all possible pairs of items, respondents are shown a series of tasks 

where every item is seen a minimum of 1 time. Many versions of the tasks are shown across 

respondents so that every pair of items is seen across the entire sample, but not within each 

respondent. This reduces the cognitive load on participants while still providing robust data on 

preferences and importance. By presenting fewer comparisons, Sparse MaxDiff aims to maintain 

data quality and reliability, even with fewer data points, making it efficient and suitable for 

 

 

1 Sawtooth Software offers a Thompson sampling method of MaxDiff they call Bandit Best-Worst. It uses Thompson Sampling to oversample the 

best items from previous respondents. We do not cover this approach in this paper. 
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surveys with many items or when respondent fatigue is a concern. The main drawback of the 

Sparse MaxDiff approach is that each item is seen only once and not in every possible pairwise 

comparison. 

Express MaxDiff, on the other hand, is designed to expedite the MaxDiff process by 

showing each respondent a subset of the total number of items. It can be argued that using a 

subset of items is easier for the respondent to handle cognitively. Psychological literature 

suggests respondents have a difficult time evaluating too many attributes (for example, the 

recommendation to show respondents only 6-12 attributes in a conjoint choice design). By using 

subsets of items, Express MaxDiff allows each item in the subset to be seen multiple times and in 

more pairwise combinations. It also reduces the cognitive load on the respondent compared to 

Sparse MaxDiff because fewer items are seen by each respondent. Across the sample, many 

versions of the subsets of items are used such that every item, and more pairwise comparisons, 

are seen more times. 

Both approaches utilize the power of hierarchical Bayes multinomial logit modeling to 

impute the parameters associated with the items, both at the individual respondent level and the 

aggregate, upper level, model. 

In comparison, while both methods aim to enhance the efficiency of the MaxDiff process, 

Sparse MaxDiff primarily reduces the number of item comparisons to lessen respondent burden, 

whereas Express MaxDiff focuses on collecting more data per item per respondent. Both 

approaches seek to balance the trade-off between data quality and respondent effort, albeit 

through slightly different mechanisms. In terms of predictive accuracy, Sparse MaxDiff has been 

shown to predict better to out-of-sample holdout tasks than Express MaxDiff 

The idea of using a set of seeded items in an Express MaxDiff project arose during 

discussions at the 2023 Turbo Choice Modeling workshop where Tom Eagle discussed using 

them in some projects he had completed. Bryan Orme suggested a detailed evaluation of the use 

of seeded items in Express MaxDiff studies be conducted and presented at  Sawtooth Software’s 

A&I conference. 

There is a lot of literature in psychology about the respondent’s inability to cognitively 

process more than 15 to 20 items. Yet clients are very skeptical of using only a subset of items 

for each respondent; but showing many items only one time to each respondent also somehow 

feels inadequate. We will explore alleviating these concerns by including a small subset of items 

that will be seen by all respondents in an Express MaxDiff design. 
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MOTIVATION FOR USING SEEDED ITEMS 

The graphics below attempt to summarize the value of using seeded items. The tables below 

show what a traditional Express MaxDiff might show respondents.  

Respondent A  Respondent B 

ITEM 

# 1 2 3 
. 

. 

. 
37 38 39 40  ITEM 

# 1 2 3 
. 

. 

. 
37 38 39 40 

1          1         

2          2         

3          3         

. . .          . . .         

37          37         

38          38         

39          39         

40          40         

 

 

The charts above show the pairs of items that might be seen in a traditional Express MaxDiff 

design. For two respondents: A sees items 1, 3, 38 and 40; B sees items 2 and 37 through 39. 

Only a single pair are seen by both respondents shown in purple. 

In a seeded design, assuming 3 items are used as seeds, there is a minimum of 3 pairs of 

items seen by every respondent, and, as a result, more pairs seen in common across respondents 

A and B. The chart below shows the pairs seen in common are across items 1 to 3 and item 38 
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Respondent A  Respondent B 
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The upper-level portion of the HB MNL model of a seeded Express MaxDiff design has more 

data across pairs for use in estimating the variance-covariance matrix 

SIMULATED RESPONDENT TESTING 

We took an old 43 item Express MaxDiff study with 2,303 respondents as gospel. Their 

parameters are truth. We examine the traditional and seeded Express MaxDiff designs, as well as 

a Sparse MaxDiff design. All of these designs were generated using the recommendations of 

Wirth and Wolfrath (2012). 

For the traditional Express MaxDiff we generated a design using 100 subsets of 20 items 

drawn from the 43 items. We generated 100 versions of 12 tasks with four items per task to show 

the 20 items. 

In the seeded Express MaxDiff we generated 100 versions of 15 items, adding items 39–43 

as the seeded items seen by every respondent. Again, we used 100 versions of 12 tasks with 4 

items per task to show the 15+5 items. 

The Sparse MaxDiff design had 100 versions of all 43 items. Each version had 9 tasks of 5 

items in each task. 

In all cases, respondents were randomly assigned to a single version in each task. We also 

tested each design using generated discrete choice responses with 3 values of the scale error (1,2, 

and 3). 
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The table below summarizes the design tested. 

Traditional  

Design 

# items/R 20 

# tasks 12 

# alts/task 5 

Scale 1, 2, 3 

Seeded  

Design 

# items/R 20 

# tasks 12 

# alts/task 5 

Seeded items 39–43 

Scale 1, 2, 3 

Sparse  

Design 

# items/R 43 

# tasks 9 

# alts/task 5 

Seeded items NA 

Scale* 1, 2, 3 

Runs 

Burn-in 10,000 

Saved/10 1,000 

Prior df 50 

Prior Var 1.3 

We estimated the hierarchical Bayes MNL model for every design using Sawtooth Software’s 

stand-alone CBC HB software to generate parameters. We used a burn-in of 10k iterations and 

we saved 1k iterations, saving every 10th iteration (10k total iterations after burn-in). 

Convergence was achieved quickly in every test. 

For each Express MaxDiff design we predicted each respondent’s utility of every item in 

every task across every version. That is, each respondent was used to predict the utility of every 

item across the entire design, not just the version they were randomly assigned. This resulted in 

13,818,000 predictions of utility and share (2,303 Rs x 100 versions x 12 tasks/version x 5 

items/task). 

In the Sparse MaxDiff design we also estimated the utility of every item across the entire 

design. This resulted in 10,363,500 predicted utilities and shares (2,303 Rs x 100 versions x 9 

tasks/version x 5 items/task). 

We compared the aggregated predicted to known parameters using correlations, mean 

absolute error (MAE) and compared the rankings of the top 5 and bottom 5 items. At the level of 

the individual respondents, we also compared predicted parameters and shares to the known 

respondent level parameters and shares. At the respondent level we examine the MAEs of each 

parameter (predicted to known), the MAEs of each parameter, the MAEs of the shares, and the 

MAE of the ranking of the items in each task. At our reviewer’s (Keith Chrzan) suggestion, we 

also examined the correlations of the predicted and known mean parameters across saved draws 

and across respondents for every parameter estimated. 
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SIMULATION RESULTS 

The 2 tables below summarize the aggregate estimated to known parameter comparisons. 

Correlations of the 43 Items 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 0.998 0.996 0.993 

Orig w/ Seeded 0.998 0.997 0.993 

Sparse 0.999 0.997 0.993 

 

Mean Absolute Errors of the 43 Parameters 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 0.146 0.234 0.359 

Orig w/ Seeded 0.162 0.238 0.328 

Sparse 0.281 0.238 0.286 

 

Looking at the correlation between the predicted and known parameters in the 1st table above 

we see very little difference among the three types of designs and across different scale error 

assigned to the generated choices. 

The 2nd table of MAEs does show the traditional Express MaxDiff better predicts the actual 

parameters than the seeded Express and Sparse MaxDiff design. But the difference is relatively 

small. Interestingly, the Sparse MaxDiff had the largest MAEs when the scale was equal to 1 but 

performed as well or better than the other design as scale error increased. 

The next set of tables compares the predicted versus the known rankings of the top and 

bottom 5 items 

Top 5 Parameter Rankings 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional all 5 all 5 3 of 5 

Perfect match 1 5 2 

Orig w/ Seeded 4 of 5 4 of 5 all 5 

Perfect match 1 0 3 

Sparse all 5 4 of 5 4 of 5 

Perfect match 5 0 2 
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Bottom 5 Parameter Rankings 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 4 of 5 all 5 4 of 5 

Perfect match 4 3 4 

Orig w/ Seeded all 5 all 5 4 of 5 

Perfect match 5 5 4 

Sparse 4 of 5 all 5 4 of 5 

Perfect match 4 5 2 

 

These data suggest the traditional design is marginally better than the seeded design and 

about the same as the Sparse MaxDiff design when the scale error is 1. As scale error increases 

the predicted rankings remained about the same. A perfect match represents when the number of 

top and bottom 5 items were matched EXACTLY with the known parameters. 

When examining the predicted parameters and shares across all the tasks in the entire 

designs, we do not see major differences across the three types of designs. 

Average Aggregated Parameter MAE across all tasks 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 1.008 0.777 0.725 

Orig w/ Seeded 1.008 0.777 0.728 

Sparse 1.101 0.838 0.747 

 

The average aggregated parameter MAEs across all tasks across all items are about the same, 

with the Sparse MaxDiff design slightly worse. As scale increases, the parameters regress 

towards zero which results in lower MAEs as scale error increases. The same conclusions can be 

drawn in the average aggregated shares across all tasks in the table below. 

Average Aggregated Share MAE across all tasks 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 0.119 0.099 0.092 

Orig w/ Seeded 0.116 0.097 0.092 

Sparse 0.122 0.101 0.091 
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Examining the predicted to known ranking of items in each task across the entire design 

clearly shows the Sparse MaxDiff design performing better than either the traditional or seeded 

Express MaxDiff designs. The impact of increasing scale error is inconclusive. These MAEs are 

the predicted rank of the items in each task to the known ranking. 

Lastly, we examine the average correlation of each of the predicted and known mean 

posterior draws. 

Average Correlation Across 43 Items Mean Posterior Draws 

 Scale = 1 Scale = 2 Scale = 3 

Orig w/ Traditional 0.687 0.499 0.361 

Orig w/ Seeded 0.681 0.674 0.569 

Sparse 0.675 0.456 0.325 

 

At a scale error of 1 the best mean correlation across the 43 known and prediction parameters 

is the traditional Express MaxDiff design. The seeded Express MaxDiff and Sparse MaxDiff 

design are slightly lower. But, as scale increases the traditional and Sparse MaxDiff design 

correlations drop quickly and by a large amount, whereas the seeded Express MaxDiff design 

more closely predicts the known parameters. This suggests the seeded Express MaxDiff design 

can more closely reproduce the respondent heterogeneity in the posterior individual respondent 

level mean parameters. This is the only result that suggests the value of using a seeded Express 

MaxDiff design. 

LIVE RESPONDENT TESTING 

Research Plan 

For our live respondent testing, we studied candy preferences among a set of 40 different 

candies: 
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Traditional approaches to testing preferences for large item sets like this include standard 

BestWorst designs where each item is shown ~3 times to each respondent, but all items are 

shown; Sparse BestWorst designs where each item is shown only 1 time to each respondent, but 

all items are shown; and Express BestWorst designs where each item is shown ~3 times to each 

respondent, but only a randomly-selected subset of items (typically one-third to one-half of the 

items) are shown to each respondent. (See Chrzan and Peitz, 2019; Godin et al., 2023, Orme, 

2019; Serpetti et al., 2016; and Wirth and Wolfrath, 2012). 

In addition to using each of those approaches as a test cell, we created two experimental cells 

based on an Express BestWorst framework but employing the use of a small subset of fixed item 

“seeds” that would be seen by all respondents in the cell, with the remaining items selected at 

random. Our first experimental approach tests the use of “user selected” seeds, designed to 

mimic a situation where a client selects the items they want all respondents to see—we had no 

client, so we just used the first five candies as seeds for this cell. Our second experimental 

approach tests whether using “informed seeds” that span the top, middle, and bottom of the 

preference spectrum perform better than the user selected seeds. Here, we collected a pretest 

census-balanced sample of 50 respondents using a traditional Express BestWorst design and 

estimated their utilities using a hierarchical Bayes model; for subsequent respondents, we used 

the candies with mean probability scores ranked #1, #2, # 20, #39, and #40 from the pretest 

sample HB results as the fixed seeds. Cells 3-5 all show only 20 of the 40 items to each 

respondent. 
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# Approach Task Structure Size Description 

1 
Traditional BestWorst 

Exercise 

- 5 items per task 

- All 40 items included 

- Each item shown 3x per 

respondent 

# Tasks: 24 

N Size = 301 
Standard full design 

2 
Traditional Sparse 

BestWorst Exercise 

- 5 items per task 

- All 40 items included 

- Each item shown 1x per 

respondent 

# Tasks: 8 

N Size = 300 

Standard Sparse 

design 

3 
Traditional Express 

BestWorst Exercise 

- 5 items per task 

- 20 items randomly 

selected per respondent 

- Each item shown 3x per 

respondent 

# Tasks: 12 

N Size = 316 

Standard Express 

design with no seeded 

items 

4 
Express BestWorst with 

User-Selected Seeds 

- 5 items per task 

- 20 items per respondent: 5 

fixed, 15 randomized 

- Each item shown 3x per 

respondent 

# Tasks: 12 

N Size = 309 

Designed to mimic a 

client selecting certain 

items to use as seeds. 

We just used the first 5 

items as seeds here. 

5 
Express BestWorst with 

Informed Seeds 

- 5 items per task 

- 20 items per respondent: 5 

fixed, 15 randomized 

- Each item shown 3x per 

respondent 

# Tasks: 12 

N Size = 308 

HB utilities were 

estimated from 50 

census-balanced initial 

respondents; seeds for 

subsequent 

respondents were 1st, 

2nd, 20th, 39th, and 40th 

ranked items. 

 

To validate our models, we first set up two BestWorst-style holdout tasks unique to each cell 

where each respondent within each cell saw the same two tasks. These holdout tasks were 

determined randomly by the Lighthouse Studio designer using one-version, two-task designs, 

each displaying five alternatives. Respondents were asked to select which candy they would be 

most likely to choose, and which candy they would be least likely to choose from the set shown. 

These fixed tasks are held out from estimation, and we used the utilities estimated from the main 

exercise for the cell to predict the holdout choices. An example task from Cell 1 (Traditional 

BestWorst) is shown below (note that the main tasks for all cells used this same task structure—

all that varied across the cells was the number of items in the underlying design, the number of 

times each item was shown in that design, and the number of tasks shown to each respondent): 



229 

 

Our second holdout approach utilized universal fixed ranking-based holdout tasks, where all 

respondents across all cells saw the same two tasks and were asked to rank each of the five 

candies shown in each task in order of preference, where 1=most preferred and 5=least preferred. 

Once again, we will use each set of estimated utilities for each cell to try to match the observed 

preferences from the holdout tasks, both within-sample (testing each cell’s utility predictions of 

the holdout task choices for that cell) and out-of-sample (testing each cell’s utility predictions of 

the holdout choices made by all the other cells). The two ranking holdout tasks used are shown 

below. 
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FIELDWORK AND DATA CLEANING 

We executed the survey in January and February 2024 using Prodege’s peeq marketplace 

sample, among respondents 18+ who eat candy at least a few times per year. 

The data was cleaned for speeding (defined as those completing the survey in < ½ the median 

completion time) and age mismatch between open-ended age asked early in the questionnaire 

and year of birth asked at the end of the questionnaire (respondents with a discrepancy of 2 or 

more years were removed). 

We did not utilize any on-the-fly or post hoc Root Likelihood (RLH) based approaches to 

catching respondents who answer as randomly as true random robots (Chrzan and Orme, 2022), 

because we are utilizing sparse designs which produce less stable RLH estimates (typically 

inflated) since items are not seen more than once, so this type of data scrubbing would be 

imbalanced across design cells. 

In the questionnaire we collected other data including candy purchase frequency, spending, 

attitudes towards sour candy and candy with nuts, whether the respondent has a nut allergy, and 

area, region, and state. 

MODEL ESTIMATION 

For each cell, we estimated the utilities twice using hierarchical Bayes (HB): first with no 

covariates included, and then with six covariates including age group, greater than median 

preference for chocolate candy, greater than median preference for hard candy, or greater than 

median preference for chewy candy, attitude towards sour candy, and attitude towards peanuts 

and nuts in candy. 

For the MaxDiff estimation we used the standard Lighthouse Studio defaults of 20,000 burn-

in iterations, and 10,000 posterior saved iterations. 

ANALYSIS OF RESULTS 

Candy Preferences 

Our first point of comparison across the five design cells is to review the candy preferences 

themselves to see whether we get very different preference structures emerging from the varying 

designs. 

In the table below are the estimated utilities from each model, transformed using the 

probability scaling approach where preferences across the items sum to 100, the scores are ratio 

scaled, and an item with a score of 4 is two times as preferable as an item with a score of 2. 

Scores have been sorted by the mean preferences of cell 1 (traditional BestWorst design), and 

results shown are from the models without covariates: 
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Top 20 Items 

Item 

# 

Cell 1: 

Traditional 

BestWorst 

Cell 2: 

Traditional 

Sparse BW 

Cell 3: 

Traditional 

Express BW 

Cell 4: 

User Selected 

Seeded 

Express BW 

Cell 5: 

Informed 

Seeded 

Express BW 

Reese’s Peanut Butter Cup 24 5.14 5.79 5.66 5.98 5.77 

Kit Kat 14 4.79 4.79 4.77 5.00 5.32 

Snickers 30 4.62 4.90 5.27 5.79 5.27 

M&Ms 18 4.38 4.61 4.69 4.33 5.04 

Hershey’s Milk Chocolate 10 4.34 4.55 4.93 5.22 5.26 

Twix 35 4.30 4.46 4.50 4.99 5.17 

Milky Way 20 3.85 3.83 4.28 4.51 4.21 

Reese’s Pieces 25 3.82 3.39 3.42 4.33 4.03 

3 Musketeers 1 3.72 3.32 3.41 3.64 3.98 

Butterfinger 5 3.65 3.60 3.80 3.69 3.80 

Lindt Dark Chocolate 

Truffles 
17 3.35 3.63 3.95 4.00 3.59 

Baby Ruth 4 2.92 2.97 3.30 3.22 2.98 

Almond Joy 3 2.90 3.53 2.86 2.96 2.91 

Rolo 26 2.71 2.91 3.10 2.86 3.08 

York Peppermint Patties 40 2.66 2.34 2.50 2.38 3.04 

Skittles 28 2.64 2.70 2.11 1.95 2.45 

Heath Bar 9 2.63 3.03 2.77 3.19 2.58 

Starburst 32 2.43 2.45 2.62 2.19 2.16 

Payday 22 2.39 2.09 2.63 2.25 2.37 

Whatchamacallit 38 2.32 2.58 2.65 2.73 2.79 

 

Bottom 20 Items 

Item 

# 

Cell 1: 

Traditional 

BestWorst 

Cell 2: 

Traditional 

Sparse BW 

Cell 3: 

Traditional 

Express BW 

Cell 4: 

User Selected 

Seeded 

Express BW 

Cell 5: 

Informed 

Seeded 

Express BW 

Lifesavers Big Ring 

Gummies 
16 2.22 2.69 2.22 2.06 2.11 

Haribo Gold Bears 8 2.18 2.34 1.76 1.75 1.62 

Jolly Ranchers 12 2.13 1.79 1.61 1.15 1.40 

Sour Patch Kids 31 2.13 2.06 2.42 1.85 1.96 

Werther’s Original 37 2.12 1.64 1.18 1.80 1.56 

Junior Mints 13 1.91 1.42 2.22 1.95 1.32 

Airheads 2 1.82 1.30 1.24 1.48 1.09 

Milk Duds 19 1.74 1.76 2.08 1.57 2.05 

Whoppers 39 1.66 1.57 1.42 1.67 1.98 

Twizzlers 36 1.63 1.63 1.54 0.90 1.40 

Jelly Belly 50 Flavor Jelly 

Beans 
11 1.53 1.51 1.40 0.96 0.81 

Skor 29 1.45 1.14 1.64 1.25 1.27 

Swedish Fish 33 1.41 1.48 1.18 1.21 1.07 

Lemonhead 15 1.26 1.30 0.93 0.90 0.94 

Tootsie Rolls 34 1.16 1.28 1.04 1.37 0.99 

Nerds 21 1.06 1.20 0.76 0.84 0.79 

Dum Dums Lollipops 7 0.93 0.70 0.51 0.46 0.52 

Dots 6 0.80 0.67 0.62 0.49 0.62 

Pop Rocks 23 0.72 0.47 0.66 0.36 0.43 

Runts 27 0.58 0.59 0.38 0.78 0.29 
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From a visual inspection of the heatmap, we observe that the darker orange (“hot”) colors are 

generally floating towards the top of the table across all cells, with the top six items being 

consistent (varying slightly in order only), with the exception of M&Ms for cell 4 being outside 

that cell’s top 6. Looking at the darker blue (“cold”) colors, we see that they also move 

consistently toward the bottom of the table, with the bottom 4 candies being universally the 

same, again with slight variations in preference order. 

So, at least from a high-level visual perspective, each of the techniques is capturing roughly 

similar preferences toward the top and bottom of the scale, with some larger fluctuations in the 

middle. We can confirm that we are capturing similar preference structures a bit more 

quantitatively by comparing the correlations of the mean importance scores across the five cells, 

as shown in the table below (the highest correlation is indicated in bold black; the lowest 

correlation is shown in bold red): 

Correlations between Importance 

Scores across design cells Traditional 

BW 

Traditional 

Sparse BW 

Traditional 

Express BW 

User Selected 

Seeded 

Express BW 

Informed 

Seeded 

Express BW 

Traditional BW 1.000 -- -- -- -- 

Traditional Sparse BW 0.979 1.000 -- -- -- 

Traditional Express BW 0.974 0.972 1.000 -- -- 

User Selected Seeded Express BW 0.973 0.968 0.976 1.000 -- 

Informed Seeded Express BW 0.975 0.972 0.972 0.975 1.000 

Overall, the correlations are quite strong, with a low of 0.968 between cells 2 and 4, and a 

high of 0.979 between cells 1 and 2. At a very baseline level, none of the approaches generate 

drastically different preference data, which is perhaps most reassuring from a client’s 

perspective. But are we getting similar predictive fits to both in-sample or out-of-sample 

holdouts across the cells? We will examine those results next. 

Aside on Model Validation 

Before we get to those results, here is a little background in case you are not familiar with 

calculating Hit Rates and Mean Absolute Errors (MAEs) to see how well your data is predicting 

fixed holdout task choices. 

For Hit Rates, we start by building a model to estimate individual-level utilities from our 

BestWorst exercises. Then, we simulate the holdout task options at the individual level and use 

the estimated utilities to predict which item the respondent will pick as the best and worst option 

of each holdout. We then compare the predicted choices against the observed holdout task 

choices: if the choices match, we count it as a hit, and if they do not match, we count it as a miss. 

Finally, we take the sum of the hits across all respondents divided by the total correct possible to 

get our overall Hit Rate values. Here is what these choices might look like for one respondent: 

 Holdout 1 Holdout 2 

 Best Worst Best Worst 

Actual Choices Item 1 Item 7 Item 12 Item 3 

Simulated Choices Item 1 Item 14 Item 12 Item 26 

 ✓ X ✓ X 
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For this respondent, we correctly predicted both of their Best choices, but we got both of the 

Worst choices wrong. So, the Hit Rate for this respondent is 50% (2 correct out of 4), where a 

perfect score would of course be 100%. 

Next, here is how Mean Absolute Error (MAE) calculations work. Again, using our 

estimated BestWorst utilities, we simulate the holdout task now at the aggregate level. We then 

compare the share of preference predictions from the estimated utilities to the actual share of 

choice frequencies of each of the holdout tasks for the sample. We calculate the difference 

between the estimated and actual shares, and we take the absolute value of those differences and 

average across them—the result is the Mean Absolute Error. 

 Holdout 1 

 Item 1 Item 2 Item 3 Item 4 

Actual Choice Shares 20% 30% 10% 40% 

Simulated Choice Shares 22% 28% 15% 35% 
     

Differences +2% -2% +5% -5% 

Absolute Differences 2 2 5 5 

Mean Absolute Error (2 + 2 + 5+ 5)/4 = (14/4) = 3.5 

In the example above, our share predictions are off by 2 points each for the first two items, 

and 5 points each for the second two items, resulting in an MAE of 3.5. Again, a perfect score 

would be zero, no error. As an analyst you can attempt to minimize the MAE by tuning the 

exponent (a constant value used to scale the utility values up [producing more differentiation in 

the data] via an exponent > 1, or scale them down [flattening the data] via an exponent < 1), but 

for this paper all MAEs reported are from their “natural,” un-tuned state. 

In-Sample Holdout Validation 

For the in-sample BestWorst holdouts, we start by examining the individual-level Hit Rates 

to see how well the model for each design cell captures individual preferences. We compare the 

observed best and worst choices from the holdout tasks of each respondent to the choices we 

predicted they would make based on their individual-level utilities. Note that the BestWorst-style 

holdout tasks were unique for each design cell, but all respondents within the cell saw the same 

two holdout tasks. We ran these comparisons twice, using each of the two sets of utilities for 

each cell: models estimated without covariates, and models estimated with covariates. A table of 

results is below. 
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In-Sample Hit Rate Comparison 

 NO COVARIATES WITH COVARIATES 

Cell 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

Holdout1 

Best 
66.8% 57.7% 57.0% 66.7% 58.1% 68.4% 55.0% 53.2% 59.5% 56.2% 

Holdout 1 

Worst 
64.1% 62.0% 55.4% 64.7% 58.1% 63.8% 60.3% 57.3% 62.5% 59.4% 

Holdout 2 

Best 
65.4% 57.3% 67.1% 51.8% 47.1% 64.5% 56.7% 63.9% 51.5% 50.6% 

Holdout 2 

Worst 
69.1% 69.3% 43.7% 48.2% 56.8% 66.8% 66.7% 45.3% 51.1% 57.1% 

Overall 

Best 
66.1% 57.5% 62.0% 59.2% 52.6% 66.4% 55.8% 58.5% 55.5% 53.4% 

Overall 

Worst 
66.6% 65.7% 49.5% 56.5% 55.0% 65.3% 63.5% 51.3% 56.8% 58.3% 

Overall 66.4% 61.6% 55.8% 57.8% 55.0% 65.9% 59.7% 54.9% 56.1% 55.8% 

Difference with Covariates -0.5% -1.9% -0.9% -1.7% +0.8% 

Looking first at the results from the models with no covariates, the Traditional BestWorst 

design resulted in the highest hit rate, at 66.4% overall; the Traditional Sparse BestWorst design 

also does fairly well, but the hit rates for the three Express design cells are lower, with no 

observable improvement of either seeded approach over the Traditional Express model. 

These results are consistent with expectations, and also reflect a slight methods bias in the 

data. For the Traditional BestWorst design, each respondent saw all 40 of the candies three times 

each, so we achieve more stable individual-level results using that approach. For the Traditional 

Sparse BestWorst design, items were shown only once, but all items were shown so there is no 

chance for accidental surprise items showing up in the holdout tasks. This is the bias facing the 

Express designs—since the items used for each respondent in the Express design cells are only a 

randomized subset of the total items in the design, there’s no guarantee that any of the items that 

were included in the holdout tasks were actually shown to a particular respondent. So, it’s not 

surprising that the scores for these cells are lower, but if our hypothesis were true, we would 

have expected that the Seeded Express designs would have higher scores than the traditional 

Express design, and the evidence does not support that conclusion. 

When we look at the models that included covariates, we observe a similar story. The 

Traditional BestWorst design achieves the highest hit rates, followed by the Traditional Sparse 

BestWorst design, and then all of the Express cells do a little bit worse, with no meaningful 

improvement of the Seeded designs over the Traditional Express design. Consistent with 

previous research presented over the years at the Sawtooth Software Conference/Analytics & 

Insights Summit, the use of covariates did not improve the individual-level hit rates for the in-

sample validation tests: four of the five cells actually display lower hit rates once covariates were 

included. Note that this does not mean that covariates are universally not helpful!—we will come 

back to this subject a bit later in the paper. 
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Continuing our examination of the in-sample BestWorst holdouts, we move next to the 

aggregate-level MAEs achieved by each of the models. Here we are trying to predict how the 

entire sample within each design cell will make choices in the holdout tasks for that cell, based 

on the utilities estimated for that cell. A table of results is provided below. 

In-Sample MAE Comparison 

 NO COVARIATES WITH COVARIATES 

Cell 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

Holdout1 

MAE 
2.7% 2.4% 1.8% 2.5% 3.6% 3.0% 3.3% 1.4% 2.7% 3.8% 

Holdout 1 

MAE 
2.7% 2.8% 1.7% 4.2% 4.7% 2.8% 2.9% 1.3% 3.3% 4.9% 

Overall 2.7% 2.6% 1.7% 3.4% 4.2% 2.9% 3.1% 1.4% 3.0% 4.3% 

Difference with Covariates +0.2% +0.5% -0.3% -0.4% +0.1% 

Overall, the MAEs are relatively small for all models, so we are adequately capturing in-

sample preferences with each model. As before, the Traditional BW and Traditional Sparse BW 

approaches tend to have the lowest error, especially in comparison to the two Seeded design 

cells. There is a bit of an unexpected anomaly for the cell 3 holdouts, as we have very low 

prediction error for that cell where we would have expected it to be more in-line with the other 

cells. We suspect that that may have been a lucky design where for whatever reason it was easier 

to predict those particular holdouts at the aggregate level than some of the other cells. Should 

anyone ever decide to repeat this study, we are highly dubious that they would see a similar 

result. 

Focusing on the covariate side of the table, we again see a similar story. The traditional cells 

achieve a slightly lower error rate than the seeded Express cells, with cell 3 being an unexpected 

outlier. Most tellingly, however, we do not see either of the Seeded designs showing any 

improvement or ability to lower the error for an Express-type design. 

As we saw with the in-sample Hit Rates, the in-sample MAEs generally do not improve 

much if at all when covariates are included in the model. Three of the five cells display slightly 

higher error rates with covariates than without. 

Out-of-Sample (Ranking Task) Holdout Validation 

For out-of-sample testing, we use a slightly different approach for our validation testing. 

Recall that for these holdouts we are not using standard BestWorst-style questions, but two 

ranking questions, each ranking five candies per screen in order of preference. Rather than trying 

to predict the accuracy of all the rankings for each holdout, which is a difficult hurdle to jump 

under the best of circumstances, we instead cycled through different iterations of groups of 

rankings, looking at each set of pairs, triples, quads and quints that emerge from the five items 

used in a given holdout ranking task. 
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In other words, for any given pair in the holdout, can we predict the relative first choice 

preference correctly? For any given set of three items can we predict the relative first choice 

correctly? For any given set of four items, can we predict the relative first choice correctly? And 

finally for the full set of five items, can we predict the relative first choice correctly? 

For this data, we first examined the within-cell Hit Rates, using each cell’s utility data to 

predict its own observed holdout ranking task responses. 

Ranking Task In-Sample Hit Rate Comparison 

 NO COVARIATES WITH COVARIATES 

Cell 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

Pairs 

(10 sets 

per 

holdout) 

84.62% 79.52% 80.14% 78.19% 79.90% 84.30% 79.43% 78.83% 77.85% 78.59% 

Triplets 

(10 sets 

per 

holdout) 

78.95% 71.90% 71.85% 70.49% 73.10% 78.80% 71.82% 70.19% 69.37% 71.79% 

Quads 

(5 sets per 

holdout) 

74.29% 66.53% 65.51% 64.24% 68.77% 74.35% 66.57% 63.70% 61.91% 67.21% 

Quints 

(1 set per 

holdout) 

70.27% 62.50% 60.60% 58.09% 65.58% 70.43% 62.50% 58.70% 53.56% 64.45% 

Weighted 

Average 
79.90% 73.44% 73.39% 71.77% 74.59% 79.74% 73.38% 71.82% 70.59% 73.24% 

Difference with Covariates -0.16% -0.06% -1.56% -1.18% -1.35% 

 

For the data with no covariates used in estimation, the Traditional BestWorst design achieves 

the highest hit rate, with the Traditional Sparse and Traditional Express designs producing 

similar results. While the user-selected seeded design fares the worst of all, in this case the 

informed seeded design does demonstrate slightly higher hit rates than the traditional express 

BestWorst design and even the Traditional Sparse design. 

Moving to the results with covariates, we see the same pattern: Traditional BestWorst has the 

highest hit rates, the Sparse BestWorst cell is at par with the informed seeded model, and the 

user-selected seeded design performs the worst overall, if only by small margins. And once again 

we see that including covariates in the model does not lead to improved in-sample predictions, as 

all of the hit rates decrease slightly when covariates are used in the upper-level model during 

estimation. 

Next we shift our focus to what we really care about the most—comparing how well our 

various models predict the rankings of respondents OUTSIDE of that particular cell. Out-of-

sample validation is the gold standard for comparing model performance, as it is generally a 

higher-to-much-higher hurdle to cross. 
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The table below contains the MAEs for the different groupings of items within the holdout 

ranking questions for each of the design cells under study. For each column, we are using that 

cell’s utilities to predict the rankings made by respondents from all of the other cells combined. 

Ranking Task Out-of-Sample MAE Comparison 

 NO COVARIATES WITH COVARIATES 

Cell 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

1 

Traditional 

BW 

2 

Traditional 

Sparse 

BW 

3 

Traditional 

Express 

BW 

4 

User 

Selected 

Seeded 

Express 

BW 

5 

Informed 

Seeded 

Express 

BW 

Pairs 

(10 sets 

per 

holdout) 

2.9% 4.3% 5.0% 7.2% 5.5% 3.3% 4.0% 3.3% 5.5% 4.3% 

Triplets 

(10 sets 

per 

holdout) 

3.2% 4.7% 5.2% 7.2% 6.8% 3.7% 3.9% 3.2% 5.9% 5.4% 

Quads 

(5 sets per 

holdout) 

3.0% 4.8% 5.2% 7.0% 7.7% 3.3% 3.5% 3.0% 5.5% 5.7% 

Quints 

(1 set per 

holdout) 

2.5% 4.9% 5.3% 6.7% 8.6% 2.6% 3.3% 2.8% 5.2% 6.2% 

Weighted 

Average 
3.0% 4.6% 5.1% 7.1% 6.5% 3.4% 3.8% 3.2% 5.6% 5.1% 

Difference with Covariates +0.4% -0.7% -1.9% -1.5% -1.5% 

 

Overall, the MAEs are relatively low. For the models without covariates, the Traditional 

BestWorst cell maintains the lowest out-of-sample error rate, followed by the Traditional Sparse 

BestWorst design. As has been shown in the studies cited previously in this paper, the Traditional 

Express design fares worse at out-of-sample prediction than Sparse designs do. And, once again, 

contrary to our hypothesis, including small subsets of fixed items (i.e., seeds) along with a 

randomly-drawn subset of items in an Express design does not appear to improve the results. 

This of course is only one study, but the out-of-sample error rates are substantially higher for the 

seeded designs, so using seeded items made things worse, not better. 

Looking next to the results with covariates, a similar story emerges, but now the three 

Traditional cells are all more or less at par, while the seeded designs have quite a bit more error. 

As my kids would say, whomp whomp. Alas, our idea does not seem to improve out-of-sample 

performance of Express BestWorst designs. 

However, it is exceedingly important to look at the relative performance of the models with 

covariates versus those without when it comes to validating out-of-sample choices. As my 

colleagues and I also showed in our 2023 paper (Godin et al., 2023), the covariates really do help 

lower the out-of-sample error for the more sparse design approaches used for understanding 

preferences with large sets of items, like Sparse BestWorst and Express BestWorst. While this 

current study shows relatively modest improvement compared to last year’s study (which dealt 
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with not only large item sets, but large item sets with very long statements [> 200 characters]), 

the improvement appears meaningful to us. The more difficult the task, and the more sparse you 

need to make the design, the more using (good) covariates in the model will help you better 

match out-of-sample preferences. 

How to choose good covariates is a subject for another paper, but in this case we designed 

the questionnaire to only ask a small set of questions that should be highly-related to candy 

preferences: how strongly they favor chocolate vs. hard vs. chewy candy, whether they favor or 

are averse to sour candies or candies with nuts, and age, with different generational cohorts being 

drawn to different groups of candy, as tastes change over time (sour candies were quite rare when 

I was young, for example, and now you find them everywhere). 

In sum, and consistent with our results with the synthetic data, we do not see much benefit 

for real respondents of this idea of seeding the Express BestWorst designs with fixed items seen 

by all respondents. 

RESPONDENT BEHAVIOR AND PERCEPTIONS 

While the predictive power of our models may not have worked out in our favor, do any of 

the approaches lead to different perceived respondent experiences when completing the different 

exercises each of the respondents were exposed to? We looked at several different measures to 

understand how the respondent experience differed across the design cells. 

First, we asked respondents about their perceptions of the accuracy of the BestWorst exercise 

they were assigned as it pertained to their own personal preferences among the set of 40 candies. 

After completing the exercise, respondents were shown their personal top two and bottom two 

items based on on-the-fly individual-level logit estimations of their choices. We then asked them 

how accurately the results reflected their preferences in order to see whether any particular 

approach showed perceived improvement over others. 

Results are shown in the bar chart below. 

 

29.9%

13.6%

12.0%

41.3%

11.6%

32.6%

36.9%

36.4%

32.3%

36.5%

37.6%

49.5%

51.6%

26.3%

51.8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C5: Informed Seeded Express BW

C4: User Selected Seeded Express

C3: Traditional Express BW

C2: Traditional Sparse BW

C1: Traditional BW

Perceived Accuracy of BW Exercise

Bottom 3 Box Very accurately Extremely accurately
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While the top two box scores were almost 90% for cells one, three, and four, they dropped to 

about 70% for cell five (Informed Seeded Express design) and only 60% for cell two. In other 

words, designs where items were shown multiple times were perceived as being more accurate 

than the Sparse design where each item was only shown once. This outcome is actually as 

expected, as it again displays a methods bias where having only one exposure to each item leads 

to a perceived worse fit for a particular respondent, primarily because the on-the-fly individual-

level logit results from a Sparse design are less stable because of that sparseness of input 

information. Seeing an item only once may not accurately capture the preferences between, say, 

the top item from two different tasks. Once we get to actual hierarchical Bayes estimation where 

the individual level utilities can “borrow” from the aggregate-level preferences in the upper-level 

model (also known as Bayesian Shrinkage), we expect the perceptions might improve. So, we 

knew this pattern for the Sparse design cell would likely emerge from the data, and it does not 

mean that the Sparse design does not work well—we’ve shown the contrary in our Hit Rate and 

MAE tests above. It’s just not likely to perform well in this kind of test. The important thing to 

take away from these results is that the Seeded designs did not outperform the Traditional 

Express design in terms of perceived accuracy either. 

Next we asked respondents to evaluate their own survey-taking experience in terms of how 

they felt about the exercise on various perception metrics. For each cell, we presented a semantic 

differential question with six different pairs of items covering perceptions of whether the 

exercise was: 

• Clear vs. Confusing 

• Enjoyable vs. Unenjoyable 

• Fun vs. Dull 

• Appealing vs. Unappealing 

• Easy vs. Difficult 

• Short vs. Long 

Prior to analysis, we recoded the four-point scale used to a -4, -1, 1, 4 scaling where 

-4=strong agreement with the statement on the left, -1= mild agreement with the statement on the 

left, 1 = mild agreement with the statement on the right, and 4=strong agreement with the item 

on the right. Just to keep you on your toes, the statements with positive connotations have 

negatively scaled scores and the statements with negative connotations have positively scaled 

scores. 



240 

 

Overall, you can see that regardless of design, respondents generally had strongly positive 

perceptions of the candy evaluation exercise. (We may have benefitted from a fun subject matter, 

rather than evaluating long statements about insurance benefits, no offense to any insurers who 

might read this paper). 

If we zoom further in, we can see that the Traditional Sparse and Traditional Express designs 

tended to be perceived the most favorably, while the two Seeded Express designs and Traditional 

BestWorst design were perceived relatively worse. 

 

ANOVA F p-value 
Short vs. Long 10.377 <.001 
Easy vs. Difficult 0.953 0.432 
Appealing vs. Unappealing 3.050 0.016 
Fun vs. Dull 1.756 0.135 
Enjoyable vs. Unenjoyable 3.355 0.010 
Clear vs. Confusing 3.165 0.013 
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The F test results shown above suggest that there were no strong differences in perceptions 

between Easy vs. Difficult nor Fun vs. Dull across the designs, but perceptions of length were 

highly significantly different (Traditional Sparse perceived as the shortest exercise, User Selected 

Seeded Express and Traditional BestWorst were perceived as the longest exercises). Given the 

number of screens respondents were exposed to for each of the designs, these perceptions are in 

line with the reality of the nature of the designs. 

Once again, though, we do not see any evidence that the Seeded designs were perceived more 

positively than the traditional Express design; unfortunately, they are generally worse. 

DISCUSSION 

In conclusion, seeding the items in an Express BestWorst design appears to offer no real 

improvement over a traditional Express BestWorst design where all of the items shown are 

simply randomly selected from a larger pool of items. We gave the Express BestWorst designs 

the best chance of success by using one-half of the total items for each respondent rather than 

merely one-third, but having a small number of fixed items seen by all respondents did nothing 

to improve the in-sample or especially the out-of-sample accuracy of the predictions. 

The one exception may be when there is a lot of error in the responses (i.e., high scale), as 

simulated data tests show higher correlation with known utilities for the seeded designs in that 

special case. 

But it sounded like a good idea! 

Sparse BestWorst designs generally outperform Express BestWorst designs, as has been 

shown in previous bake-off studies listed in the appendix. For large item sets with relatively 

simple concepts like pictures of candy, traditional BW designs do perform quite well, and the 

increased length is not perceived so poorly that the overall experience is viewed negatively. As 

the number of items in the set grows, or as the complexity of the items being studied increases, 

our previous work (Godin et al., 2023) suggests that Sparse designs will start to outperform 

traditional full designs, especially when covariates are included in the estimation of utilities. 

SUMMARY 

Clients sometimes balk at the idea of simply showing each item in a large design just once to 

each respondent, even though the Sparse design approach has over and over been shown to 

perform well, and relatively better than other techniques used in the presence of large design sets. 

While there is something perceptually comforting about having items being evaluated multiple 

times, when the full set of items is not exposed to each respondent, the resulting utility estimates 

consistently suffer especially when it comes to out-of-sample prediction. Getting some read on 

every item from every respondent, even if the individual signal is fairly weak, seems to better 

inform the model about the full gamut of preferences that may exist in the marketplace at large. 

If getting highly-accurate reads of each individual’s true preferences is the paramount goal of 

your research, provided that the item set is not too large (say, 40 items or less) or the items 

themselves do not require lengthy processing by respondents, a standard BestWorst design is still 

your best bet. 
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However, all of the designs we tested did produce preference data that was very highly 

correlated, so if you or your client have a preference for an Express BestWorst design structure 

despite the evidence in favor of Sparse designs, the results won’t completely lead you astray 

either. 

   

 Thomas Eagle Jon Godin Megan Peitz 
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