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ABSTRACT 

Choice-based conjoint (CBC) experiments are widely used to understand consumer 

preferences and willingness to pay for different product features. One important consideration in 

designing CBC experiments is the balance of attribute levels across the design. Implementing 

this strategy seeks to give every level an equal chance to influence the respondent’s decision in 

the conjoint design and can work in the majority of cases. However, the authors of this paper 

were interested in revisiting the work of Huber and Zwerina (1996) to determine if utility 

balanced designs, a design strategy that trades off on level balance while optimizing which 

alternatives are paired against each other within tasks, could result in better predictions at the 

individual level. This paper sets out to explore several different methods of optimizing designs 

and offers access to an open-source package, built in Julia by the Numerious team, to leverage 

these different design strategies in the future. 

The results from this paper show that utility balanced designs perform well in predicting data 

from both utility balanced and non-utility balanced designs, and that respondents do not seem to 

be fatigued by utility balanced designs. This would suggest that utility balanced designs could be 

a successful strategy depending on the attributes and levels being tested. However, we must 

caution the user of utility balanced designs as some design strategies may result in sparse data at 

the interaction level. We also believe that further research is needed to understand the differences 

in willingness to pay estimates between utility balanced designs and traditional, level balanced 

designs. It should also be noted that there are several different strategies for creating efficient 

designs as well as other packages used to generate the designs outside of what is mentioned in 

this paper. See References for more details. 

BACKGROUND 

According to Rossi, Allenby, McCulloch (2005) the greatest challenges in marketing are to 

understand the heterogeneity in preferences. This is why marketing practitioners prefer unit-level 

hierarchical Bayesian estimates. 

To uncover those unit-level estimates, we are often taught to build designs that are level 

balanced (i.e., within each attribute, each level appears an equal number of times). Implementing 

this strategy seeks to give every level an equal chance to influence the respondent’s decision in 

the conjoint design and can work in the majority of cases. 

But McFadden (1974) shows that the estimated utilities from the model depend not just on 

which concepts are included in the design, but which concepts are paired against each other. The 

multinomial logit model (MNL) assumes part-worth utilities are independent of each other (i.e., 

preference for one level does not depend on the preference for another level). However, certain 



 

combinations of attributes and levels can affect the distribution of preferences among 

respondents. For example, it would not be surprising to see a Ferrari at a $250K price point and a 

Chevy Volt at $25K. But it wouldn’t make much sense to see a Chevy Volt at $125K—so why 

would we waste observations on combinations that aren’t relevant? Because of circumstances 

like this, we think good designs should not just be a matter of level balance across alternatives, 

but designs should also be dependent on which alternatives are paired against each other within 

the CBC tasks. 

One could also argue that designs that optimize for the principles above could result in 

smoothing over the unit-level estimates (Bayesian Shrinkage), muting the individual level 

preferences and potentially resulting in poorer insights into the true heterogeneity of the 

marketplace. 

So, what is a researcher to do? And is it really that big of a deal if we continue building 

designs according to these principles? 

NON-LEVEL BALANCED AND UTILITY BALANCED DESIGNS 

One solution is to use a design that is not level balanced. A non-level balanced design could 

result in some levels appearing significantly more frequently than others, and some pairs of 

levels appearing more or less frequently than others. However, this type of design may be useful 

when the relationships between the attributes and levels are complex, and/or where it’s important 

to test specific interactions between the attributes. 

Utility balanced designs are one alternative for a non-level balanced design and it has been 

shown (Huber and Zwerina, 1996) that designs which include utility balance as one criterion can 

improve the understanding of aggregate effects. 

Utility balanced designs are conjoint designs in which the total utility of each concept shown 

within a task is as even as possible. Figure 1.1 shows the difference between what a level 

balanced design might look like versus a utility balanced design. 

Figure 1.1: Level Balanced vs. Utility Balanced Designs 
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In reviewing Figure 1.1, we can see the imbalance of levels within the utility balanced 

design. This imbalance can cause apprehension among many researchers who would warn that if 

the prior understanding is misspecified (i.e., people will spend less for a Ferrari and more for a 

Chevrolet vs. more for a Ferrari and less for a Chevrolet), then the resulting alternative 

comparisons will be less efficient than a design built with the prior at 0. However, if using the R 

idefix package (Traets, F., Sanchez, D.G. and Vandebroek, M. 2020), one can balance the prior 

utilities from a Bayesian perspective. In this approach, users can specify a full distribution of 

prior knowledge to balance the utility within tasks. This approach should avoid misspecification 

since more uncertainty is being incorporated into the design. Therefore, we will field a study 

with a level balanced design for n=50 completes and capture individual preferences with a 

hierarchical Bayesian model to seed our utility balanced designs. 

Another concern around utility balanced designs is that the CBC tasks become too difficult 

and respondents become fatigued if the choices are too hard. And if the choices are too hard, 

respondent error outweighs the added design efficiency. To address this concern, we will ask 

respondents to rate the designs on measures like easy vs. hard, long vs. short, as well as explore 

completion time, drop-off rates, percentage of bad actors (i.e., cheaters) and ultimately the error 

around their responses by examining both within-sample and out-of-sample holdouts. 

METHODOLOGY 

We conducted an online survey about TVs with over 3,500 real respondents. Attributes and 

levels of the CBC exercise are shown in Figure 2.1 and a screenshot of the conjoint exercise is 

shown in Figure 2.2. 

Figure 2.1: Conjoint Attributes and Levels 

 



 

Figure 2.2: Conjoint Exercise Screenshot 

 

The conjoint experiment consisted of 14 choice tasks, each containing 4 product profiles and 

a dual-response none alternative. 12 choice tasks were designed by the algorithm (more details 

below) and 2 of the choice tasks were fixed, meaning that all respondents saw the same 

combinations of attributes and levels on two screens. 

Respondents were assigned to one of eight of the following cells (Figure 2.3) with 

approximately n=450 completes per cell. All cells had 300 versions of the design except Cell 6 

which is a 1 version design used for out-of-sample holdout validation. 

Figure 2.3: Respondent Cells 
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Sawtooth Software is leveraged to create the designs in Cells 1, 2, and 6. You can read more 

about the design algorithms used in Lighthouse and Discover on Sawtooth Software’s website 

(www.sawtoothsoftware.com). The Numerious cells were built in Julia (https://julialang.org/), an 

open-source programming language particularly suited for computational math. 

The five Julia cells vary based on whether there is a balance penalty, whether there is a utility 

prior and whether that utility prior will be scaled. 

The goal of the cells that have no balance penalty is to minimize D-error versus those with a 

balance penalty will trade-off minimizing the D-error in order to obtain more level balance. The 

three cells that have a utility prior leverage a hierarchical Bayesian model built from the first 

n=50 to respond to Cell 4. Then, within those utility prior cells, we will either trust the priors 

entirely and allow them to be 100% of their original size or we will shrink them to 50% of their 

original size. A high-level overview is below in Figure 2.4. 

Figure 2.4: Overview of Julia/Numerious Design Cells 

 

RESULTS 

To measure the accuracy of the models built from each of the different design cells, we will 

explore the mean absolute error (MAE) of the models. Calculating the MAE involves assessing 

the average absolute difference between the predicted values from the hierarchical Bayesian 

model and the actual values in a set of test data, usually referred to as the holdout tasks. The 

larger the magnitude, the worse the model does at predicting the actuals—so the smaller MAE 

the better. 

Historically, MAEs have been calculated using the point estimate from the HB model, which 

is typically calculated by taking the average value of all the draws. However, the whole point of 

using a Bayesian approach is to capture the uncertainty in the data. Thus, to calculate the MAE 

for this paper, we will leverage 1,000 draws from the HB model and create 1,000 MAEs. Then 

we will plot the distribution of the MAEs using a violin plot. For posterity’s sake, we will also 

plot the MAE based on the point estimate on the distribution chart. However, one will see in the 

following results the risks of only using point estimates to run analysis. In the example below 

(Figure 3.1), you can see the distribution of the 1,000 MAEs in red and the black dot on the chart 

represents the point estimate MAE. 

http://www.sawtoothsoftware.com/
https://julialang.org/


 

Figure 3.1: Example MAE Distribution with Point Estimate MAE Included 

 

Note—The point estimate MAE is calculated based on each individual’s point estimate part-worth, 

which is the average of their posterior distribution. After finding the average of the posterior, 

we exponentiate each individual’s point estimate, simulate the fixed task and report the average 

 probability of choice and then report the difference from the stated frequencies. However, the 

point estimates can get distorted particularly when constraining price (a non-linear transformation) 

and the IIA property could also distort where the point estimate lies. Because of these two effects 

(1. order/sequence of averaging with non-linear transformation [before vs. after and within vs. across draws] 

and 2. IIA property of logit probabilities) the point estimate MAES (i.e., the black dots) are not 

required to be within the middle of the distribution and can even be found outside the distribution. 

UNCONSTRAINED MODEL RESULTS 

First modeling the data unconstrained, we can see that the distribution of MAEs for Cell 1 is 

further to the left in Figure 4.1 suggesting that it is the top performing design strategy when 

trying to predict responses from Cell 6. Figure 4.2 shows the likelihood that Cell 1 is better than 

the other cells (i.e., what percentage of the distribution of MAEs does not overlap with other 

cells). For example, Cell 1 is 87% likely to be better than Cell 2 and 100% likely to be better 

than Cell 3 and Cell 4 (i.e., there is no overlap in Cell 1’s MAE distribution with Cell 3 and 4). 

Relative to Cell 1, it does appear that Cells 5b and 5c show promise. 

Figure 4.1: Distribution of MAEs for Unconstrained Models when Predicting Cell 6 
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Figure 4.2: Likelihood of a Cell’s MAE Outperforming the Other Cells 

when Predicting Cell 6 

 

It should also be noted that if one were to use the point estimate (black dot) instead of the 

draws, a researcher might come to very different conclusions. For example, they might claim that 

Cell 4 is significantly better than Cell 3—which, when looking at the draws, we know is not the 

case. Therefore, practitioners should remain cautious when drawing conclusions based only on 

the point estimate. 

In addition to predicting Cell 6, we can take the data from Cell 1 and predict the two holdouts 

in Cell 2, 3, 4, 5a, 5b, and 5c. Then we can take the data from Cell 2 and predict the two holdouts in 

Cell 1, 3, 4, 5a, 5b, and 5c and so on. 

Figure 4.3: Distribution of MAEs for Unconstrained Models 

when Predicting All Other Cells 

 



 

Figure 4.4: Likelihood of a Cell’s MAE Outperforming the Other Cells 

when Predicting All Other Cells 

 

Figure 4.3 and 4.4 show Cell 1 continuing to outperform the other cells with Cell 4 being the 

worst at predicting out-of-sample data. (However, if only examining point estimates, one would 

conclude that Cell 5c is significantly better than Cell 1 when predicting the holdouts in all other 

cells). 

CONSTRAINED MODEL RESULTS 

Given that practitioners may use constraints in their model to avoid unrealistic utility 

estimates (i.e., high prices preferred to low prices vs. low prices preferred to high prices), we 

also wanted to explore the results when price is constrained to be negative. It is important to note 

that the application of constraints in a conjoint model should be carefully considered as 

constraints introduce assumptions or biases into the analysis. Constraints should align with the 

underlying business context and be based on informed judgments. Proper validation and 

sensitivity analysis should also be conducted to ensure that the imposed constraints do not overly 

restrict the model or compromise its predictive power. 
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Figure 5.1: Distribution of MAEs for Constrained Models when Predicting Cell 6 

 

Figure 5.2: Likelihood of a Cell’s MAE Outperforming the Other Cells 

when Predicting Cell 6 

 

In the constrained models, Cells 1, 2, and 5b do very well with Cell 5c not far behind when 

predicting Cell 6 data (Figure 5.1). There is more overlap in the performance of Cells 1, 2 and 5b 

(Figure 5.2) suggesting that a utility balanced design is a viable option when constraints are 

needed. 

Similar to the unconstrained model, when predicting all other cells combined, we see Cell 1 

and Cell 5c as the best performers (Figure 5.3, 5.4). In all options, Cells 3 and 4 perform the 

worst but overall the MAE distributions are still relatively low (<4). 



 

Figure 5.3: Distribution of MAEs for Constrained Models when Predicting All Other Cells 

 

Figure 5.4: Likelihood of a Cell’s MAE Outperforming the Other Cells 

when Predicting All Other Cells 

 

RESPONDENT REACTIONS TO THE DIFFERENT CELLS 

From a model standpoint, utility balanced designs, particularly Cells 5b and 5c, seem to be 

viable options when creating designs that can perform on par with Sawtooth Software designs for 

this dataset. Next, we want to address how respondents might feel about the different designs. 

Using a 5-point semantic differential, we asked respondents to rate the experiment on 

different dimensions (i.e., long vs. short, difficult vs. easy). Overall, all cells were easy, 

enjoyable, and appealing (Figure 6.1). Double-clicking into the “easy vs. difficult,” we see that 

over two-thirds of respondents classified the exercise as “easy” regardless of what cell they were 

in (Figure 6.2). Therefore, one could conclude that for this survey, for these respondents, a utility 

balanced design is no more difficult than a traditional design. 
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In Figure 6.3, we can see some additional metrics such as length of interview (LOI) and 

drop-off rate. LOI does appear to be higher for the utility balanced cells as respondents no longer 

have tasks that are “no brainers”—but that does not seem to impact respondent opinion, error, or 

drop-off rates. 

Figure 6.1: Respondent Ratings (Means) of Cell Experience

 

Figure 6.2: Frequencies of Easy versus Difficult by Cell 

 

Figure 6.3: Additional Metrics Captured by Cell 

 

COMPARING PREDICTIONS OF UTILITY VS. NON-UTILITY BALANCED DESIGNS 

One additional finding to be discussed is the ability of the model from a utility balanced 

design to predict responses from non-utility balanced design cell. In Figure 7.1 we can see that 

Cells 5a, 5b and 5c have low MAEs when predicting other utility balanced cells and non-utility 

balanced cells (Cell 1, 2, 3, and 4). However, the non-utility balanced cells (Cell 1, 2, 3, and 4) 

struggle to predict utility balanced cells (5b and 5b). 



 

Figure 7.1: Average MAEs per Cell when Predicting Other Cells 

 

This makes us wonder if people are responding to the choice exercises differently, relative to 

which cell they are in. One hypothesis is that by using a utility balanced design, we might be 

priming people to answer the fixed tasks differently than they would if it were a standard design. 

Initial exploration seems to suggest that the utility balanced cells are potentially using the none 

alternative differently. 

If we look at a different study and compare a Lighthouse Studio design (Cell 1) to a Julia, 

utility balanced design, we can see that when the none is excluded (Figure 7.2), the Julia cells 

(JL) perform much better than the Lighthouse Studio cells (LH). But, when we include the none 

in the model (Figure 7.3), the Lighthouse Studio design cells do much better than the Julia cells. 

Figure 7.2: Comparing MAEs of a Lighthouse Design versus 

a Julia Utility Balanced Design, Excluding the None Option 
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Figure 7.3: Comparing MAEs of a Lighthouse Design versus 

a Julia Utility Balanced Design, Including the None Option 

 

To explore the potential influence of the design alternatives on respondent behavior, we 

examined the willingness-to-pay (WTP) values for each design. We hypothesized that if the 

design was influencing respondent behavior, we might see differences in WTP values between 

the designs. Our results showed that for one product, all four designs produced similar WTP 

estimates. However, for another product, there were significant differences between the 

Lighthouse and Julia designs. This finding suggests that further research is necessary to uncover 

the factors that may be driving these differences. 

CONCLUSION 

In this study, we investigated the use of utility balance designs in CBC experiments. Our 

results suggest that leveraging estimated prior utilities to inform the CBC design can be valuable, 

particularly if the researcher plans to constrain the model. The authors encourage other 

practitioners to test out this approach by exploring the literature around utility balanced and/or 

two-stage designs (additional references can be found in References) as well as reaching out 

should you choose to leverage Numerious’ Julia designer package. 

However, further research is necessary to explore the potential influence of the design on 

respondent behavior and to uncover the factors that may be driving differences in WTP estimates 

between designs. In addition, caution should be exercised when using utility balance designs, as 

they may result in sparse data at the interaction level. In these cases, a standard balance and 

overlap design or an alternative specific design may be more appropriate. 

NEXT STEPS 

If you are curious to try out a utility balanced design, reach out to the authors of this paper. 

We’ve created a private GitHub repo and welcome anyone that wants access upon request. We’ve 

only just scratched the surface on features and would love to build a more robust, open source 

tool together. 



Megan Peitz Trevor Olsen 
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